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Abstract

Projection-based testing of the typical trajectory for two or multiple
groups of irregular and sparsely observed (multi-dimensional) data
from underlying a continuous stochastic process has increased
attention in the literature due to its applicability in wide range of
(non-stationary) covariance structures. We aspire that this article will
enhance the applicability of this powerful inference mechanism, to
many biostatistical applications, especially from the perspective of
designing new clinical trials. We derive the theoretical power function
and construct sample size calculation toolbox for this projection-
based test under a general structure of group difference and broad
class of covariance structures of the underlying process. Numerical
studies demonstrate that the power of the test does not degrade
when the percentage of missing observations remain within a certain
range, making the test missing-immune. Applicability of the test
is demonstrated for several real data examples. A user-friendly R
package fPASS with an elaborately explained vignette is created to
enhance its applicability in practical applications.

Keywords
Power, Projection-based test, Functional principal component analysis.

1 Introduction

Many real world applications involve comparing two groups based on
a primary outcome observed over time. For examples, in clinical trials
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Koner and Luo 3

testing the efficacy of a study drug is usually concluded by means
of a statistically validated two-sample testing procedure. In modern
clinical trials, the outcomes are collected longitudinally, thereby two-
sample inference techniques designed for longitudinal data are the most
frequently adopted in this front4. These techniques have many advantages,
including being well-studied in the literature and having efficient
statistical software readily available for implementation. Additionally,
power and sample size calculation formula for these procedures are readily
available in the standard software, making them a valuable tool in clinical
trial design1.

The standard state-of-the-art two-sample testing procedures for repeated
measures design as well as the commonly used power and sample size
calculation (PASS) softwares such9, proc mixed11, assumes certain
restrictive assumptions on the evolution of the mean trajectory over time.
For example, in clinical trial design phase, it is a standard practice to
assume that the the mean function grows linearly, or quadratically over
time. Also, the power function formula requires to specify a certain
stationary covariance structure of the longitudinal response, such as
Compound symmetry (CS) or Auto-regressive (AR), or Banded. Although
the standard random effect model induces a non-stationary covariance
structure, the implementation becomes quite burdensome when the
number of random effects grows more than three. Moreover, many of the
tests require that the number of observation times for each subject are
uniform and the interval between two subsequent visits are regular.

Over the past few years, several attempts have been made to develop
powerful testing procedures for longitudinal data by encompassing the
longitudinal design under a sparse and irregular functional design. These
procedures allows the mean functions to evolve non-parametrically over
time, and they do not impose any structural assumptions on the covariance.
Inference problems involving sparse and irregularly observed functional
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data are more challenging than dense regularly observed functional data
because a few number of observations are observed for each subject. These
procedure rely on smoothness of temporal mean and covariance function
and borrow information from all subjects to make inference about the
mean.

The first genre of tests developed for sparse functional data are the
likelihood ratio tests2,3 and its various extension to more complicated
covariance structures12,14. The other genre is the projection-based testing
procedure that projects the data onto a suitable set of data-driven
leading directions and use the projection-scores to further test for the
difference between the two groups.10 employed an Anderson-Darling
test on projection scores to test the equality of distributions, whereas13

used a Hotelling’s T 2 type statistic to test the difference in the mean
between the scores. The advantage of Hotelling T 2 type statistic over
the nonprameteric distribution test is that it considers the scores as
multivariate vectors and subsequently, it tests the null hypopthesis of
group difference based on a single value, whereas the non-parameteric
distribution test requires multiple testing. This facilitates extension of
this test to multivariate sparsely observed functional setting, as developed
by8. Moreover, the Hotelling T 2 type test can be easily extended to test
difference between multiple groups.

Unfortunately, applicability of all these powerful tests developed for
sparse and irregularly observed functional data is still confined to
researchers interested in developing statistical methodology. Although
these tests make much less restrictive assumption on the mean and
covariance structure of the response, allows irregularly observed data,
they still did not attract the attention of clinical design practitioners. This
is primarily driven by two obstacles – firstly, owing to the theoretical
intricacies involved, finite sample power function formula is yet to be
developed for any of these tests. Subsequently, sample size calculation
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softwares based on these test to achieve a certain degree of power is not yet
available to the end-user. Therefore, although these tests can be applied to
test for group difference after collection of data in clinical trials, they still
fail to take the place of the primary statistical approach in the statistical
analysis plan (SAP) document because the optimal sample size and the
corresponding power analysis cannot be presented if one decide to use
these tests as the primary testing procedure.

In this article, we derive a PASS formula for the projection-based
Hotelling T 2 type test developed for sparse and irregularly observed
functional data by13. We first derive the asymptotic power function of the
test and present a user-friendly formula to derive the minimum sample
size required to achieve a certain power by inverting the power function.
We show that the non-null distribution of the test-statistic follows an
approximate non-central χ2 distribution with non-centrality parameter
comprising of the projection of the true difference in the mean on the
principal directions. The PASS formula have several nodes of flexibilities,
First it can accommodate any smooth structure of the group difference,
it does not need to be linear, quadratic or piece-wise linear. Second, the
user can specify any arbitrary non-stationary smooth covariance structure
for the response, in addition to standard parametric structural covariance
assumed for longitudinal data. Third, the number of observations for each
subject can vary (randomly) and the user can specify any irregular design
for the observation points.

For fixed sample size, the power function of the test fundamentally relies
on how well the covariance structure as well as the principal data-driven
directions are estimated from the data. If the sample size is reasonably
large enough so that the covariance structure is well-estimated, via several
numerical studies we demonstrate the test’s power does not deteriorate
even if the percentage of missing observations for each subject increases
until within a certain range, rendering the test missing-immune. This
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feature is highly desirable in real-world applications where missing data is
often encountered. We demonstrate how the test can be applied in two real
clinical trial examples involving patients with Parkinson’s Disease (PD),
and illustrate how such applying such a powerful testing procedure would
possibly lead to a recruitment of significantly lower number of subjects to
achieve the same power compared to the one specified in the respective
SAPs.

To enhance the practical applicability of this testing mechanism, we
develop a user-friendly R package, ”fPASS”, hosted on Github at https:
//github.com/SalilKoner/fPASS. We hope that the availability
of this package will make the projection-based test more accessible to
practitioners in the field of biostatistics, especially in the design and
analysis of clinical trials.

The rest of the article is presented as follows. In Section 2, we describe
the testing procedure briefly and present the non-null distribution of the
statistic when the projection functions are known. Section 3 is dedicated
to the asymptotic non-null distribution of the test when the projection
functions are estimated from the data and how the power can be calculated
in practical situations. Sample size calculation formula is presented in
Section 4. Validation of the PASS formula is presented via several
numerical studies are presented in Section 5 with real data applications
are presented in Section 6.

2 Projection-based testing framework

In this we will briefly describe the testing framework of13 to preface its
PASS formula. Let Yij,g denotes the jth observation for the ith subject in
the gth group, for g = 1, 2, i = 1, . . . , ng, and j = 1, . . . , Ni,g. Let Tij,g is
the associated timepoint when Yij,g is observed. We posit the following
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model for the response,

Yij,g = Xi,g(Tij,g) + εij,g, (1)

where εij,g are independent and identically distributed (i.i.d) measurement
error with common variance τ 2 > 0. For each g = 1, 2, we assume
that the latent process {Xi,g : i = 1, . . . , ng; } are i.i.d copies of an
underlying stochastic process Xg(t) ∈ L2(T ), the space of all square
integrable random functions in the compact domain T . The associated
inner product of two functions f1(t) and f2(t) in the space L2(T ) is
defined as 〈f1, f2〉 :=

∫
T f1(t)f2(t) dt. We assume that Xg(t) have a

group specific mean function µg(t) and a (common) covariance operator
(Ξ f)(t) =

∫
Σ(t, s)f(s)ds, induced by the covariance kernel Σ(t, s) =

Cov(Xg(t), Xg(s)) for both g = 1, 2. We also assume that the Xi,g(t)

are independent across the groups as well. We focus on sparse random
design here16, i.e. we assume that the number of observations for each
subject, Ni,g is finite with supi,gNi,g <∞ and the observation points
Tij,g : j = 1, . . . , Ni,g are i.i.d copies of a random variable with bounded
density function within the domain T . Lastly, let n := n1 + n2 be the
total number of subjects combing the groups. We are interested to test
the hypothesis

H0 : µ1(t) = µ2(t) ∀ t ∈ T

vs

H1 : µ1(t) 6= µ2(t) for some t ∈ T .

(2)

We will briefly describe the projection-based testing framework here.
Let {ψk(t)}k≥1 be the orthonormal eigenfunctions of the covariance
operator Ξ, corresponding to the sequence of ordered eigenvalues, λ1 ≥
λ2 ≥ · · · ≥ 0. Throughout Section 2 we assume that the eigenfunctions
are known.13 considered a dimension reduction approach to project the
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response trajectories onto a set of orthogonal basis functions {ψk(t)}k≥1
for L2(T ) to represent the latent process as

Xi,g(t) = µ0(t) +
∞∑
k=1

ζik,gψk(t), g = 1, 2, (3)

where µ0(t) is the pooled mean function, common to both the groups,
and ζik,g = 〈Xi,g − µ0, ψk〉 is the group-specific projection that captures
the group specific difference. Specifically, {ζik,g} are uncorrelated across
k, has a mean 〈µg − µ0, ψk〉 and variance λk, g = 1, 2. We set µg(t)−
µ0(t) = 0 for either of g = 1 or g = 2 to ensure identifiability. In this
projection-based framework, the null hypothesis in (2) is equivalent to
testing

H0 : {E(ζik,1)}k≥1 = {E(ζik,2)}k≥1
vs

H1 : {E(ζik,1)}k≥1 6= {E(ζik,2)}k≥1.

See13 for detailed insights for the above statement.

For sparsely observed functional data, the projections {ζik,g} can not be
consistently estimated, since the entire trajectories are not observed in a
dense grid16. Hence, in the sparse design, the scores are obtained via best
linear unbiased prediction (BLUP) under a mixed model with a ”working”
Gaussian assumption16,

Yi,g = µ0i,g + Ψi,gζi,g + εi,g, (4)

where Yi,g = (Yi1,g, . . . , YiNi,g ,g)
> be the Ni,g-length stacked vector of

response for the ith subject, µ0i,g = (µ0(Ti1,g), . . . , µ0(TiNi,g ,g))
> and

Ψi,g = (ψi1,g, . . . ,ψiK,g) be the column-stacked version of {ψik,g}Kk=1’s
with ψik,g = (ψk(Ti1,g), . . . , ψk(TiNi,g ,g))

> are the mean vector and the
eigenvector matrix for the ith subject, and εi,g are the measurement error.
Under the Gaussian assumption of the scores and the measurement error,
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the best linear unbiased predictor (BLUP) of ζi,g under the model (4) is of
the form

ζ̃i,g := E(ζi,g|Yi,g)

= diag(λ1, . . . , λK)Ψ>i,gG
−1
Yi,g

(Yi,g − µ0i,g),
(5)

where GYi,g
= Cov(Yi,g) = {Σ(Tij,g, Tij′,g) + τ 2I(j = j′)}1≤j,j′≤Ni,g be

the covariance matrix of Yi,g. The quantity ζ̃i,g is termed as ”shrinkage”
scores, and it is rational choice for estimating the true score ζi,g because

E(ζ̃i,g) = E[E(ζi,g | Yi,g)] = E(ζi,g)

The BLUP estimator ζ̃i,g is a consistent estimator of the unobserved
true scores ζi,g as the number of observations per subject grows and the
measurement error gets small. It is also important to note that unlike the
true scores, {ζ̃ik,g}Kk=1 are also not uncorrelated across k.

Let ζ̃i,g = (ζ̃i1,g, . . . , ζ̃iK,g)
> be the K-dimensional multivariate scores

for the ith subject. Define, ζ̃1+ = n−11

∑n1

i=1 ζ̃i,1 and the ζ̃2+ =

n−12

∑n2

i=1 ζ̃i,2 are the average of the scores for the two groups. Similarly
define, Λ̃1 = (n1 − 1)−1

∑n1

i=1(ζ̃i,1 − ζ̃1+)(ζ̃i,1 − ζ̃1+)> and Λ̃2 = (n2 −
1)−1

∑n2

i=2(ζ̃i,2 − ζ̃2+)(ζ̃i,2 − ζ̃2+)> are the sample variance of the
’shrinkage’ scores for the two groups. Further, define the pooled sample
covariance as Λ̃ = {(n1 − 1)Λ̃1 + (n2 − 1)Λ̃2}/(n− 2). To test for H0,
a Hotelling T 2 random variable6 using the ‘shrinkage’ scores can be
constructed as

Tn =
n1n2

n1 + n2

(ζ̃1+ − ζ̃2+)>Λ̃
−1

(ζ̃1+ − ζ̃2+), (6)

As13 derived, the asymptotic null distribution of the test statistic Tn is
χ2 distributed with K degrees of freedom. However, for fixed sample size
n, by relating the Hotelling T 2 distribution to the F -distribution7 Chapter

Prepared using sagej.cls



10 Journal Title XX(X)

5, the test rejects H0 at a specified significance level α ∈ (0, 1) if

(n−K − 1)Tn
(n− 2)K

> Fα(K,n−K − 1), (7)

where K is the dimension of fPC scores estimated from the data, and
Fα(a, b) is the 100(1− α)% quantile of F -distribution with a and b

degrees of freedom.

Non-null distribution of the test

Having the testing framework discussed briefly in the previous section,
we are now ready to demonstrate the power of the test to reject the
null hypothesis H0 when the functional form of the group difference is
specified. We assume that the data are observed under a sparse design
with the underlying model (1). In the following proposition, we present
the non-null distribution of Tn when the group difference µ1(t)− µ2(t) is
different from zero and the eigenfunctions are known.

Notice that the Hotelling T 2 statistic is constructed under the fact that
the population covariance of the ‘shrinkage’ scores is the same for the
two groups when the null hypothesis is true. However, under the alternate
hypothesis, the covariance of the ‘shrinkage’ scores for the two groups
differ from each other, which is clear from Equation (2.11) of13. This
poses a significant challenge in the derivation of the non-null distribution
of the test statistic because the non-null distribution of the test must be
derived under the assumption of unequal variance of the ‘’shrinkage’
scores between the two groups. The next proposition specifies the fixed
sample non-null distribution of the test under the assumption of unequal
variance.

Theorem 1. Assume that model (1) for the observed response {Yij,g :

j = 1, . . . , Ni,g}ngi=1 is true, and supi,gNi,g <∞ almost surely. Assume
that the scores {ζik,g} are independent across i and g and they are
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Gaussian. Further assume that the true mean functions µg(t) and the
true eigencomponents {λk, ψk(t)}k≥1 are known. Then, conditional on the
truncation parameter K,

n2(1 + 1/κ)Tn
n1 + n2 − 2

d
=

∑K
k=1 d

−1
k χ2

1

(
n1(u

>
k Λ†

−1/2
∆)2

)
χ2
ν−K+1/ν

(8)

where ∆ = (δ1, . . . , δK)> with δk = 〈µ1 − µ2, ψk〉 and Λ† = Λ1 + κΛ2,
with Λg : g = 1, 2 are the population covariance of the ‘shrinkage’
scores, {ζ̃i,g}, for g = 1, 2, defined in (5). Moreover, {dk,uk}Kk=1 are
the eigenvalue and the eigenvectors of the spectral decomposition Ω† =∑K

k=1 dkuku
>
k , with Ω† := κ(κ− 1/n2)Ω + (1− 1/n2)(IK −Ω), with

Ω := Λ†
−1/2

Λ1Λ
†−1/2. Finally, ν is the degrees of freedom of the chi-

squared distribution under the denominator which is of the form

ν = n2

{
tr(Ω†

2
) + tr2(Ω†)

} [
κ2(κ− n−12 ){tr(Ω2) + tr2(Ω)}

+ (1− n−12 ){tr(IK −Ω)2 + tr2(IK −Ω)}
]−1

. (9)

Theorem 1 gives the exact distribution of the test-statistic Tn when the
eigenfunctions are known and the scores have a Gaussian distribution. The
distribution is not an exact F distribution, but we notice that it is very close
to a non-central F distribution, as the numerator is a linear combination
of K independent non-central chi-squared random variables, each with
one degree of freedom, and the denominator is a χ2

ν−K+1. Although the
form of the non-null distribution is non-trivial, however, we can efficiently
simulate random samples from the distribution, and compute the power
function of the test. In the next section, we extend the statement of the
above proposition when the eigenfunctions are unknown and explicitly
discuss how the power function of the test can be calculated in practical
situations.
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3 Calculation of power function in practical situations

In practical situation, the true eigenfunctions are unknown. Hence, the
shrinkage scores ζ̃ik,g are estimated from the data by first estimating the
mean and the covariance function of the data, followed by conducting
an functional principal component analysis (fPCA)16 of the estimated
covariance function to get a consistent estimate of the eigenfunctions. It is
important to remark that even for the sparse design, a consistent estimate
of the eigenfunctions can be obtained as long the number of subjects in
each groups are reasonably high17. Plugging in the estimator of common
mean µ0(t) and the eigenfunctions in (5), we can obtain the estimator
of the ‘shrinkage’ scores. Let ζ̂i,g = (ζ̂i1,g, . . . , ζ̂iK,g)

> be the estimated
scores for the ith subject, define ζ̂1+ = n−11

∑n1

i=1 ζ̂i,1 and the ζ̂2+ =

n−12

∑n2

i=1 ζ̂i,2 are the average of the estimated scores for the two groups.
Similarly define, Λ̂1 = (n1 − 1)−1

∑n1

i=1(ζ̂i,1 − ζ̂1+)(ζ̂i,1 − ζ̂1+)> and
Λ̂2 = (n2 − 1)−1

∑n2

i=2(ζ̂i,2 − ζ̂2+)(ζ̂i,2 − ζ̂2+)> are the sample variance
of the scores. Defining Λ̂ = {(n1 − 1)Λ̂1 + (n2 − 1)Λ̂2}/(n− 2) to be
the pooled sample covariance, in practical situations, we test the null
hypothesis H0 based on the statistic

T̂n =
n1n2

n1 + n2

(ζ̂1+ − ζ̂2+)>Λ̂
−1

(ζ̂1+ − ζ̂2+). (10)

Observed that the test statistic T̂n is the observed counterpart of the
unobserved quantity Tn defined in (6). In the next proposition, we will
derive the asymptotic non-null distribution of the test-statistic T̂n, which
serves as the fundamental result to the derivation of the asymptotic power
of the projection-based test.

Proposition 2. Assume that model (1) for the observed response {Yij,g :

j = 1, . . . , Ni,g}ngi=1 is true, and supi,gNi,g <∞ almost surely. Suppose
that the alternate hypothesis is true and that the true mean difference is
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characterized by

H1 : µ1(t)− µ2(t) = n−%/2η(t),

with η(t) 6= 0, is a fixed known function of t, for some % ∈ [0, 1].
Assume that the mean functions for both the groups and the covariance
components are estimated consistently, i.e. ‖µ̂g − µg‖ = op(1) for
both g = 1, 2, ‖ψ̂k −ψk‖ = op(1), ‖λ̂k − λk‖ = op(1) for all k =

1, . . . , K, and |τ̂ 2 − τ 2| = op(1), and that limn1/n2 → κ ∈ (0,∞). Then,
conditional on the truncation parameter K,

T̂n
d−→

κ
∑K

k=1 d
−1
k χ2

1

(
(u>k Λ†

−1/2
∆)2

)
if % = 1

∞ if % < 1

where ∆ = (δ1, . . . , δK)> with δk = 〈η, ψk〉 and Λ† = Λ1 + κΛ2, with
Λg : g = 1, 2 are the population covariance of the ‘shrinkage’ scores,
{ζ̃i,g}, for g = 1, 2, defined in (5). Moreover, {dk,uk}Kk=1 are the
eigenvalue and the eigenvectors of the spectral decomposition Ω† =∑K

k=1 dkuku
>
k , with Ω† := IK + (κ2 − 1) Λ†

−1/2
Λ1Λ

†−1/2.

Proposition 2 provides the asymptotic distribution of the projection-
based test under the local alternative, or Pitman type of alternative
hypothesis. When the true group difference decays at a rate slower than
n−1/2, then the test rejects the null hypothesis with probability 1. The
asymptotic non-null distribution of the test statistic does not require a
Gaussian assumption on the scores. It is important to remark that the
asymptotic distribution of T̂n is contingent on the consistent estimation
of the eigenfunctions from the data.

Asymptotic power function formula

To investigate the power of the test as a function as function of the sample
size, as well as to find the minimal sample size calculation (Section 4),
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we relate the non-null distribution of the test-statistic with a non-central
F distribution as in Theorem 1, under a working Gaussian assumption of
the scores. Therefore, for fixed sample sizes, (n1, n2) of the two groups,
the theoretical power function of the test can be calculated as

Pn1,n2(η) = P
(
F ∗ >

Kn2Fα(K,n−K − 1)

(1 + 1/κ)−1(n−K − 1)

)
(11)

where F ∗ is identically distributed as the random variable on the right
hand side of the expression (8). One can empirically compute the above
probability with a high precision by generating a desirably large number
of random samples from the distribution of F ∗.

Equation (11) provides the working formula for the calculation of
the theoretical power of the projection-based test. This means, from
a practitioner’s perspective, if the true group difference η(t), and the
eigenfunctions {ψk(t)}Kk=1 are specified, then one can compute the non-
centrality parameter of the F distribution in Pn1,n2(η) for any n, and
the power function of the test for any (n1, n2) provided that we have a
certain knowledge about the unknown covariance parameters Λ1 and Λ2.
From Eq. (2.11) of13, we can follow that Λg : g = 1, 2 is a complicated
function of the mean and the eigenfunctions of the stochastic process, and
the marginal density of the observation points {Tij,g : j = 1, . . . , Ni,g}. In
the next part, we will present a computationally efficient algorithm for the
estimation of the power function Pn1,n2(η) where the unknown quantities
Λg : g = 1, 2 can be reliably estimated from a representative large sample.

3.1 Data-driven estimation of theoretical power function

So far, the power function formula of the test presented in (11) requires
the knowledge about the true eigenfunctions of the data. That means, the
power function of the test is primarily dependent upon the covariance
structure of the response through its eigenfunctions. However, having
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a scientific or informed knowledge about the covariance structure of
the observation process, Σ(t, t′) rather than having a knowledge about
the eigenfunctions is more pragmatic in real life situation. Therefore, a
mechanism to extract the true eigenfunctions from the covariance function
Σ(t, t′) is necessary to calculate the power function.

A consistent estimate of the eigenfunctions can be obtained by spectral
decomposition of the covariance matrix evaluated a fine grid of points.
To be specific, first set a large grid of size R (say 100) and generate
a sequence of points of between the compact interval T to evaluate
the R×R covariance matrix with elements Σ = ((Σ(tr, tr′)))1≤r,r′≤R,
followed by a spectral decomposition of Σ to obtain a reliable estimate
of the true eigenfunctions {ψ̃k(t) : t = t1, . . . , tR}Kk=1} with K chosen
by a pre-specified percentage of variation explained (PVE) (e.g. 90%)
to extract only the leading eigenfunctions of the covariance. Then, the
projection δk can be obtained numerically by δk = R−1

∑R
r=1 η(tr)ψ̂k(tr),

for k = 1, . . . , K. However, we still have to obtain a reliable estimate of
unknown Λ to compute the power function.

As an one-stop solution for both obtaining a consistent estimator
of the eigenfunctions as well the covariance parameters {Λg : g =

1, 2}, we empirically generate a data with (possibly) large number of
subjects (say 5000) under the model (1) with µ1(t) = 0 and µ2(t) =

η(t) and the specified covariance structure. The number of observations
and observation points for each subject are also generated following
the pre-specified sampling design. Then, we can employ the standard
statistical softwares available for fPCA under sparse design (such as R
package face15) to internally estimate the smooth covariance and the
eigenfunctions. We can further use the scoring technique available in the
software to estimate the shrinkage scores for each of the 5000 subjects and
obtain a highly reliable estimate of the Λg = Cov(ζi,g) by computing the
sample covariance of ‘shrinkage’ scores based on 5000 subjects. Since, the
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eigenfunctions and the covariance of the shrinkage scores are estimated
based on a quite large number of subjects, we expect that them to be
reasonably close enough to the true eigenfunctions. We specify these
details concisely in Algorithm 3.1 below.

Input: Data information: True difference in mean function between
two groups, i.e. η(t) := µ1(t)− µ2(t), covariance of the
latent process Σ(t, t′), measurement error variance τ 2,
significance level α ∈ (0, 1), sample sizes (n1, n2), and a
pre-specified PVE to estimate the eigencomponents of the
covariance;

1 Generate a dataset with large number of subjects, say 5000, using
the model (1) by setting µ1(t) = 0 and µ2(t) = η(t) and
covariance of the Xg(t) as Σ(t, t′) and the measurement error
variance τ 2 > 0. ;

2 Preset a large grid of size R (say 100) and generate a sequence of
points t1 < t2, . . . < tR in T ;

3 Conduct fPCA on the generated dataset to obtain a highly reliable
estimate of the eigenfunctions {ψ̃k(t) : k = 1, . . . , K} at
t = t1, . . . , tR. The number of eigenfunctions K are chosen by the
specified PVE ;

4 Calculate the fPC scores for each subject and obtain the sample
covariances {Λ̃g : g = 1, 2} of the scores for the two groups. This
will serve as a reliable estimated of the true covariances
{Λg : g = 1, 2}. ;

5 for k ∈ {1, . . . , K} do
6 Calculate the projection

δ̃k =
∫
η(t)ψ̃k(t)dt ≈ R−1

∑R
r=1 η(tr)ψ̃k(tr)

7 end
8 Construct the vector ∆̃ = (δ̃1, . . . , δ̃K)>;
9 Return power function Pn1,n2(η) as in Equation (11) by replacing

∆ and {Λg} with ∆̃ and {Λ̃g} respectively;
Algorithm 3.1: Algorithm for power function for projection-based
test
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Noe that the Step 1 - Step 4 of Algorithm 3.1 is only done to obtain
a highly reliable estimate of the true eigenfunction of the covariance
parameter of the ‘shrinkage’ scores, which is an essential requirement
for reliable estimation of the power function of the test, as specified
in Proposition 2. Once the eigenfunctions and the optimal number
of functions K are consistently estimated, we can substitute the true
eigenfunctions with the estimated ones and employ the formula in (11)
to compute the power function of the test.

Usually, in the longitudinal data analysis literature, the commonly
assumed knowledge of covariance are primarily stationary, such as
compound symmetric, autoregressive (AR) etc. However, we remark that
Algorithm 3.1 is capable of computing the power function of the test for
any general covariance structure of the stochastic process Xg(t).

There is a certain degree of caution we must point out. A vivid statistical
enthusiasist might want to check how does the theoretical power function
of the test Pn1,n2(η) calibrates with the empirical power function of
the test. By empirical power, we mean that the user generates a large
replication (sayB = 1000) of the data using the specified mean difference
and the covariance structure and conduct the test (7) in each of the datasets,
and record the percentage of the time the test rejects H0. Then, for a fixed
sample size n, we remark that the theoretically calculated power obtained
via Algorithm 3.1 and the empirically calculated power (based on large
number of replications) will be close to each other only if the sample size
n is large enough so that the eigenfunctions can be consistently estimated
from the data in each of the B replications for the calculation of empirical
power function. If the sample size n is so small that the eigenfunctions can
not be consistently estimated, then the asymptotic null distribution of the
test statistic T̂n is no more a χ2

K . Therefore, the power function computed
empirically computed using the test-rule (7) based on B datasets is not
a reliable one. Hence, it should not compared to the power function
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obtained from Algorithm 3.1 when n is small, because Pn1,n2(η) requires
the eigenfunctions to be consistently estimated, as stated in Proposition 2.
This is numerically demonstrated in Section 5.2.

Another important remark is that if the eigenfunctions are known or
they are well-estimated from data, and the number of sampling points
for each subjects are reasonable enough that the scores as well as the
population covariance of the scores can be consistently estimated, the
power function of the test is not affected by the increase percentage
of missing observations for each subjects (until a certain level), since
the calculation of power function at Step 5 - 9 do not require any
information of the sampling design. Therefore, for large sample size, the
asymptotic efficiency of the test is not deprecated by the missingness in the
observation points, making the test ‘missing-immune’. We numerically
demonstrate this in Section 5.3.

4 Sample size calculation

Now that we have presented the formula for power function of the
projection-based test in Section 3, we are now ready to present the
algorithm for the minimum sample size required for our projection-based
test to achieve a stipulated power of 100(1− γ)% for any γ ∈ (0, 1).

Fix any γ ∈ (0, 1). Then the minimum sample size required for the
projection-based test to detect a non-null group difference specified by
η(t) := µ1(t)− µ2(t) with a power of 100(1− γ)% can be obtained by
inverting the power function formula specified in (11), which is presented
in the next proposition.

Proposition 3. Assume that the conditions of the Proposition 1 is true.
Suppose that the difference of the mean function between the two groups
are specified by µ1(t)− µ2(t). Assume that the eigenfunctions of the
covariance of Xg(t) is given, so that we have the projection-vector ∆ =
(δ1, . . . , δK)> with δk = 〈µ1 − µ2, ψk〉 and the population covariance of
the ‘shrinkage’ scores {Λg : g = 1, 2} is known. Let κ := n1/n2 be the
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allocation ratio of the samples in the group. Then the minimum sample
size required for the test to achieve a power of 100(1− γ)% is (κn∗, n∗)
where n∗ is the minimum positive integer that satisfies

P

∑K
k=1 d

−1
k χ2

1

(
κn∗(u>k Λ†

−1/2
∆)2

)
χ2
ν(n∗)−K+1/ν(n∗)

>
Kn∗Fα(K, (1 + κ)n∗ −K − 1)

(1 + 1/κ)−1((1 + κ)n∗ −K − 1)

)
> γ, (12)

where Λ† = Λ1 + κΛ2, and {dk,uk}Kk=1 are the eigenvalue and
the eigenvectors of the spectral decomposition Ω† =

∑K
k=1 dkuku

>
k ,

with Ω† := κ(κ− 1/n∗)Ω + (1− 1/n∗)(IK −Ω), with Ω :=

Λ†
−1/2

Λ1Λ
†−1/2. Finally, ν(n∗) is the degrees of freedom of the

chi-squared distribution under the denominator which is of the form

ν(n∗) = n∗
{

tr(Ω†
2
) + tr2(Ω†)

} [
κ2(κ− 1/n∗){tr(Ω2)

+ tr2(Ω)}+ (1− 1/n∗){tr(IK −Ω)2 + tr2(IK −Ω)}
]−1

.

Note that the unknown quantity n∗ is at the both side of the above
equation. One can find the minimum value of n∗ by iterative calculating
the left hand side of the above equation over all n∗ starting with an initial
value of 3 and stop when the left hand side is greater than γ. Alternative,
one can use the standard root-solver algorithm in any statistical software
(e.g. uniroot() function in R) to find the value of n∗ so that the left
hand side probability is equal to γ.

As discussed earlier, the true eigenfunctions as well as the covariance
of the ‘shrinkage’ scores, Λ, are unknown in practice. For a specified
covariance structure of the data, we must have a consistent estimate of
the eigenfunctions and the Λ in order to provide a reliable of estimate of
the minimum sample size using the formula (12). We will replicate the
data-driven approach described in Section 3.1 to obtain a highly reliable
estimate of the unknown eigenfunction and the covariance parameter Λ.
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compute the sample size. We reuse the Step 1 - 4 of Algorithm 3.1 to
provide a computationally efficient sample size calculation algorithm for
our projection-based test below.

Input: Data information: True difference in mean function between
two groups, i.e. η(t) := µ1(t)− µ2(t), covariance of the
latent process Σ(t, t′), measurement error variance τ 2,
significance level α ∈ (0, 1), target power γ ∈ (0, 1), ratio
of the sample size between two groups, κ = n1/n2 > 0, and
a pre-specified PVE to estimate the eigencomponents of the
covariance;

1 Generate a dataset with large number of subjects, say 5000, using
the model (1) by setting µ1(t) = 0 and µ2(t) = η(t) and
covariance of the Xg(t) as Σ(t, t′) and the measurement error
variance τ 2 > 0. ;

2 Preset a large grid of size R (say 100) and generate a sequence of
points t1 < t2 < . . . < tR in T ;

3 Conduct fPCA on the generated dataset to obtain a highly reliable
estimate of the eigenfunctions {ψ̃k(t) : k = 1, . . . , K} at
t = t1, . . . , tR. The number of eigenfunctions K are chosen by the
specified PVE ;

4 Calculate the fPC scores for each subject and obtain the sample
covariance Λ̃ of the scores. This will serve as a reliable estimated
of the true covariance Λ ;

5 for k ∈ {1, . . . , K} do
6 Calculate the projection

δ̃k =
∫
η(t)ψ̃k(t)dt ≈ R−1

∑R
r=1 η(tr)ψ̃k(tr)

7 end
8 Construct the vector ∆̃ = (δ̃1, . . . , δ̃K)>;
9 Replace ∆ and Λ with ∆̃ and Λ̃ respectively in (12) to calculate

the minimum value of n∗ such that equation holds ;
10 Return the minimum sample size required for the two groups as

(κn∗, n∗).
Algorithm 4.1: Sample size calculation algorithm
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Algorithm 4.1 requires the true group difference, covariance function of
the process, the design of the observation points and the allocation ratio of
samples in the two groups to compute the minimum sample size required
for the test to achieve a power of 100(1− γ)%. The most time consuming
part of the algorithm are the first four steps, which generates a large data
and conduct an fPCA to compute the eigenfunctions and the covariance of
‘shrinkage’ scores. This is a one time task, and it is unavoidable as we must
obtain a consistent estimate of the true eigenfunctions and Λ to be able to
provide an adequate sample size. Once these estimates are obtained, the
rest of the steps of the algorithm takes no time to provide the minimum
sample size.

Computational software

A user-friendly R package fPASS implementing the Algorithm 3.1 and 4.1
is hosted in Github at https://github.com/SalilKoner/

fPASS. The R package is capable of taking any form of covariance
structure of the data, allows for different schedule of observations for
each subjects, along with option of specification of missing percentages,
and can take any form of the mean difference between two groups. The
overall functionality of the package resembles to that of widely used
PASS software. The software efficiently computes the power function and
sample size of the test for any specific experimental design.

5 Numerical studies

5.1 Data generation

In this section, we empirically validate the power function of the test
as a function of sample size and also validate the correctness of the
sample size calculation of the test as an inverse problem of the power
function validation. To exercise our task, we perform several numerical
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experiments to demonstrate that the power function formula is indeed
valid. Specifically, we calculate the power and sample size of our
projection-based test under a factorial design. For the first factor, we
take the difference of the mean function between the two groups as
µ1(t)− µ2(t) = ηt3, where we take different values of η greater than zero,
to ensure departure from the null hypothesis. Secondly, we consider three
different (common) covariance structure of the stochastic process Xg(t),
with first two being stationary and the last one being non-stationary. The
covariance structures are:
Case 1: Compound symmetry (CS). Σ(t, t′) = σ2{ρ+ (1− ρ)I(t = t′)},
Case 2: Autoregressive of order 1, AR(1). Σ(t, t′) = σ20.5|t−t

′| with σ2 =

1, and
Case 3: Spectral. Σ(t, t′) is equal to the covariance of error
process ξi1

√
2 sin(2πt) + ξi2

√
2 cos(2πt) where ξi1

iid∼ N(0, 1) and ξi2
iid∼

N(0, 0.5).
This induces a non-stationary covariance structure of the data. Thirdly,
we consider two different random sampling designs, for the stationary
covariance structures (Case 1. and 2.), we take mi = 5 (high sparsity)
or 8 (medium sparsity) sampling points randomly taken between
[0, 1], whereas, for non-stationary covariance (Case 3.), we take mi

randomly sampled either between {4, 5, 6, 7} (high sparsity) or between
{8, 9, . . . , 12} (medium sparsity). We consider the measurement error
variance σ2

e = 0.001.

5.2 Power function

We apply Algorithm 3.1 for each of the above specified setting to calculate
the power function of the test for different values of total sample size, n
and η. The asymptotic power function of the test, Pn(η), is presented in
Table 1-3 for n = 200, 400, 800 and 1600 and η = 0.5, 0.75 and 1, across
different sparsity levels of the design, and covariance structure of the data.
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We assume equal allocation of samples in each of the two groups. As we
can see that the power function of the test increases to one as the number of
the samples increases and/or the difference between the groups increases.
Also, it is important to observe that for fixed η and n, the power function of
the test is different across the difference covariance structure of the data.
However, it seems that the sparsity level of the do not have a significant
influence on the power function of the test. This is primarily driven by the
fact that as long as the eigenfunctions and the population covariance of the
scores scores are estimated with high-precision, the sparsity level do not
have significant impact on the power function. However, for small sample
size case, having a more dense design will lead to better estimation of
the eigenfunction, leading to accurate calculation of the asymptotic power
function.

We validate the theoretically calculated asymptotic power function of
the test empirically by Monte-Carlo simulation. Specifically, for a fixed
sample size n, mean difference specified by η, the covariance structure
and the random sampling design, we generate B = 1000 replications and
then calculate the percentage of times the test rejects the null hypothesis
using the test rule (7). This number is denoted as P̂n(η), and presented
alongside the theoretically calculated power function Pn(η), in each of
Table 1-3. For small sample size situations, while empirically validating
the power of the test, the eigenfunctions may not be consistently estimated,
hence the empirically calculated power function of the test for small
sample size cases are unreliable. However, as the sample size n increases,
the theoretically calculated power function of the test matches with the
empirically calculated power. This is justified by the fact that for large
sample size cases, the estimated eigenfunctions for each of the B =

1000 datasets are close to the true eigenfunctions of the covariance,
and therefore the numbers match, and the empirically validated power
functions are reliable.
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Table 1. Power function across different sample sizes.
Covariance : Compound symmetric

# observations per subject: low

n
η = 0.5 η = 0.75 η = 1

Bn(δ) B̂n(δ) Bn(δ) B̂n(δ) Bn(δ) B̂n∗(δ)
200 0.28 0.30 0.54 0.54 0.78 0.74
400 0.49 0.46 0.83 0.75 0.97 0.92
800 0.79 0.7 0.98 0.93 0.99 0.99
1600 0.97 0.92 1 1 1 1

# observations per subject: medium

n
η = 0.5 η = 0.75 η = 1

Bn(δ) B̂n(δ) Bn(δ) B̂n(δ) Bn(δ) B̂n∗(δ)
200 0.27 0.36 0.51 0.60 0.76 0.77
400 0.47 0.52 0.81 0.80 0.96 0.94
800 0.76 0.71 0.98 0.95 0.99 0.99
1600 0.97 1 1 1 1 1

Table 2. Power function across different sample sizes.
Covariance : Auto-regressive of order 1

# observations per subject: low

n
η = 0.5 η = 0.75 η = 1

Bn(δ) B̂n(δ) Bn(δ) B̂n(δ) Bn(δ) B̂n∗(δ)
200 0.14 0.4 0.26 0.56 0.42 0.64
400 0.24 0.55 0.47 0.68 0.70 0.81
800 0.42 0.59 0.75 0.84 0.94 0.96
1600 0.71 0.76 0.96 0.96 1 1

# observations per subject: medium

n
η = 0.5 η = 0.75 η = 1

Bn(δ) B̂n(δ) Bn(δ) B̂n(δ) Bn(δ) B̂n∗(δ)
200 0.14 0.55 0.26 0.62 0.42 0.69
400 0.24 0.52 0.46 0.71 0.70 0.82
800 0.42 0.57 0.75 0.85 0.94 0.95
1600 0.71 0.74 0.96 0.97 1 1

5.3 Missing-immunity of the power

In the previous subsection, via empirical validation, we have established
that the algorithm for the fast calculation of the asymptotic power function
of the test is correct. The empirical validation is only justified when
n is large, because for small n, the eigenfunctions are not estimated
consistently when one conducts the test empirically for each of B =

1000 replications. Noting that the empirically calculated power matches
with the asymptotic power when n is large, we present the empirically
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Table 3. Power function across different sample sizes.
Covariance : Non-stationary

# observations per subject: low

n
η = 0.5 η = 0.75 η = 1

Bn(δ) B̂n(δ) Bn(δ) B̂n(δ) Bn(δ) B̂n∗(δ)
200 0.11 0.36 0.20 0.44 0.33 0.53
400 0.18 0.43 0.37 0.54 0.60 0.68
800 0.33 0.43 0.65 0.72 0.89 0.91
1600 0.60 0.62 0.92 0.92 0.99 0.99

# observations per subject: medium

n
η = 0.5 η = 0.75 η = 1

Bn(δ) B̂n(δ) Bn(δ) B̂n(δ) Bn(δ) B̂n∗(δ)
200 0.11 0.36 0.20 0.40 0.33 0.51
400 0.18 0.31 0.37 0.44 0.59 0.66
800 0.33 0.34 0.65 0.62 0.89 0.89
1600 0.59 0.57 0.92 0.92 1 1

Table 4. Power function across different missing percentages.
Covariance : Compound symmetric

# observations per subject : low
Sample

size
δ = 0.2 δ = 0.4

0% 10% 20% 40% 0% 10% 20% 40%
500 0.15 0.16 0.17 0.17 0.46 0.47 0.49 0.54
800 0.21 0.22 0.22 0.24 0.63 0.64 0.65 0.73
1200 0.28 0.29 0.30 0.32 0.79 0.80 0.82 0.84

# observations per subject : medium
Sample

size
δ = 0.2 δ = 0.4

0% 10% 20% 40% 0% 10% 20% 40%
500 0.15 0.15 0.15 0.16 0.43 0.44 0.46 0.50
800 0.19 0.20 0.20 0.21 0.59 0.60 0.62 0.65
1200 0.26 0.27 0.28 0.29 0.76 0.76 0.77 0.81

calculated power of the test for large values of n and difference percentage
of missing observations for each subjects in Table 4-6. As we can see,
although the number of missing observations for each subjects increases
from 0% to as high as 40%, the empirical power of the test remains
the same. This is due to the fact that even if the number of missing
observations for each subject increases, the eigencomponents are still
consistently estimated due to large sample size, hence the empirical power
of the test is unaffected, validating the ‘missing-immunity’ of our test in
numerical studies as well.
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Table 5. Power function across different missing percentages.
Covariance : Auto-regressive of order 1

# observations per subject : low
Sample

size
δ = 0.2 δ = 0.4

0% 10% 20% 40% 0% 10% 20% 40%
500 0.09 0.09 0.09 0.09 0.22 0.21 0.21 0.21
800 0.11 0.11 0.11 0.11 0.31 0.30 0.31 0.30
1200 0.14 0.14 0.14 0.14 0.42 0.42 0.42 0.41

# observations per subject : medium
Sample

size
δ = 0.2 δ = 0.4

0% 10% 20% 40% 0% 10% 20% 40%
500 0.09 0.09 0.09 0.09 0.21 0.22 0.22 0.21
800 0.11 0.11 0.11 0.11 0.30 0.30 0.31 0.30
1200 0.14 0.14 0.14 0.14 0.41 0.42 0.42 0.42

Table 6. Power function across different missing percentages.
Covariance : Non-stationary

# observations per subject : low
Sample

size
δ = 0.5 δ = 1

0% 10% 20% 40% 0% 10% 20% 40%
500 0.25 0.25 0.25 0.25 0.80 0.77 0.80 0.77
800 0.35 0.35 0.35 0.35 0.91 0.91 0.92 0.92
1200 0.49 0.49 0.49 0.49 0.98 0.98 0.98 0.98

# observations per subject : medium
Sample

size
δ = 0.5 δ = 1

0% 10% 20% 40% 0% 10% 20% 40%
500 0.22 0.22 0.22 0.22 0.71 0.72 0.71 0.71
800 0.33 0.33 0.33 0.33 0.90 0.90 0.90 0.90
1200 0.60 0.60 0.60 0.60 1.00 1.00 1.00 1.00

5.4 Sample size validation

Table 7-9 tabulates the minimum sample size required for the test to
achieve a power of 100(1− γ)% when the group difference, parametrized
by η increases from 0.5 to 2, across all the three covariance structures,
assuming an equal allocation (κ = 1) of samples in each group. The total
sample size combining the two groups are obtained by implementing
Algorithm 4.1, and reported in the column with heading nmin in the three
tables. To ensure the correctness of the calculation of minimum sample
size, we generate 500 synthetic data of size equal to the minimum sample
size computed by the algorithm with the difference between the mean of
the two groups specified by δ and the underlying covariance structure, and
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Table 7. Sample size justification across different target power.
Covariance : Compound symmetric

# observations per subject: low

δ
γ = 0.7 γ = 0.8 γ = 0.9

n∗ B̂n∗(δ) n∗ B̂n∗(δ) n∗ B̂n∗(δ)
0.5 642 0.64 825 0.73 1099 0.81
1 164 0.68 208 0.76 273 0.85

1.5 74 0.64 94 0.76 124 0.84
2 44 0.66 54 0.75 72 0.85

# observations per subject: medium

δ
γ = 0.7 γ = 0.8 γ = 0.9

n∗ B̂n∗(δ) n∗ B̂n∗(δ) n∗ B̂n∗(δ)
0.5 690 0.67 876 0.77 1179 0.86
1 174 0.75 222 0.83 296 0.87

1.5 80 0.75 100 0.81 134 0.89
2 46 0.73 58 0.82 76 0.9

Table 8. Sample size justification across different target power.
Covariance : Auto-regressive of order 1

# observations per subject: low

δ
γ = 0.7 γ = 0.8 γ = 0.9

n∗ B̂n∗(δ) n∗ B̂n∗(δ) n∗ B̂n∗(δ)
0.5 1577 0.79 2022 0.83 2679 0.91
1 396 0.81 504 0.87 678 0.93

1.5 178 0.84 228 0.87 302 0.94
2 102 0.81 128 0.87 170 0.93

# observations per subject: medium

δ
γ = 0.7 γ = 0.8 γ = 0.9

n∗ B̂n∗(δ) n∗ B̂n∗(δ) n∗ B̂n∗(δ)
0.5 1596 0.75 2021 0.80 2714 0.92
1 400 0.82 510 0.88 677 0.92

1.5 180 0.87 228 0.91 304 0.94
2 102 0.85 128 0.90 172 0.96

conduct our projection-based test for each of simulated dataset to compute
the empirical power, as tabulated in the column 4. As the empirical power
is close to the target power with the sample size increases, we can strongly
advocate for the correctness of the sample size calculation algorithm of
our test.
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Table 9. Sample size justification across different target power.
Covariance : Non-stationary

# observations per subject: low

δ
γ = 0.7 γ = 0.8 γ = 0.9

n∗ B̂n∗(δ) n∗ B̂n∗(δ) n∗ B̂n∗(δ)
0.5 1993 0.70 2454 0.81 3254 0.88
1 496 0.76 619 0.85 812 0.91

1.5 222 0.77 280 0.86 363 0.90
2 127 0.78 158 0.81 206 0.90

# observations per subject: medium

δ
γ = 0.7 γ = 0.8 γ = 0.9

n∗ B̂n∗(δ) n∗ B̂n∗(δ) n∗ B̂n∗(δ)
0.5 2002 0.70 2509 0.80 3274 0.90
1 498 0.71 626 0.79 824 0.90

1.5 224 0.76 283 0.86 369 0.91
2 128 0.79 160 0.87 208 0.92

6 Application on real data

6.1 Azillect study

Azillect clinical trial is the first large randomized clinical trials in Japan
that uses the changes in the total of Part II and Part II MDS-UPDRS
scores (which is an updated and improved scale than UPDRS) as the
primary endpoints for patients with early PD. In this phase-3 trial, the
participants with an age ranging from 30-79 years with a diagnosis of PD
within five years are randomized 1:1 to receive the study drug rasagaline
or placebo up to 26 weeks. A complete description about the study design
is presented in Hattori. We will demonstrate how the findings obtained
from the Azillect study can be used to design a new trial.

At the end of the study (week 26), the mean change in the part II +
III total score from the baseline was 1.87 for the placebo and −4.52 for
the rasagaline group. Figure 1 presents the typical change in the total of
MDS-UPDRS part II and III scores from the baseline for the rasagaline
and the placebo group, based on fitting model (1) with gam() function
in the mgcv package in R. Figure 2 presents the typical change in the
in the total of MDS-UPDRS part II and III scores from the baseline
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between the rasagaline and the placebo group. The solid line. (in red) in
the figure 2 is the estimate of the treatment effect, i.e. a smooth estimate of
µ̂1(t)− µ̂2(t), along with the 95% pointwise confidence interval, shaded
in blue.

The projection-based test also renders modelling the covariance
structure of the data in smooth non-parametric manner. Figure 3 presents
the two leading eigenfunctions obtained from conducting fPCA on the
smoothed estimated covariance. The eigenvalues corresponding to the two
eigenfunctions are 31.8 (red line) and 2.6 (blue line) respectively, meaning
that the first eigenfunctions explains 91% of the total variability in the
data. The pattern of the eigenfunctions conveys important insights into the
nature of variations in the total score; the primary direction (in red) depicts
a gradual variation throughout the course of the study, whereas, the change
in sign of the secondary direction (in blue) reflects the variations before
and after the midway (around week 15 approximately) of the study.

Using the estimated eigenfunctions, we use the estimated subject-
specific fPC-scores between the two groups to conduct the Hotelling-T2

test. The confidence band (does not cover 0) in Figure 2 along with a low
p-value (< 3× 10−6) from the projection-based test justifies that rasagline
is able to significantly reducing the MDS-UPDRS part II III total scores
over the 26 weeks, comparing to the placebo.

If we want to design a new study with the target treatment effect
as plotted in Figure 2 and the covariance specified by the two leading
eigenfunctions presented in Figure 3, then we need a minimum sample
size of 74 to achieve a power of 80%, and a minimum sample of 96

to achieve a power of 90%, assuming an equal allocation ratio of the
subjects in the two groups, which is less than half of the minimum
sample size calculated based on t test (about 240) as stated in Section
2.4 of5. Therefore, calculating the sample size using the projection-based
test enlarges the scope of reducing the minimum sample size required
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Figure 1. Change from the baseline in MDS-UPDRS part II + III total score for Rasagaline
and Placebo group. The shaded region reflects the 95% pointwise confidence interval.
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Figure 2. Effect of the Rasagaline on MDS-UPDRS Part II + III score over the course of the
study with 95% pointwise confidence interval (shaded in blue).

to achieve the same power compared to traditional methods used in the
clinical trials.

6.2 SURE-PD3 study

The primary endpoints for this study is the change from the baseline in the
total of Part I, II and III MDS-UPDRS scores.

Figure 4 presents the estimated change in the total UPDRS scores from
the baseline for the Inosine (in red) and the placebo group (in blue), along

Prepared using sagej.cls



Koner and Luo 31

-1

0

1

0 6 10 14 20 26

weeks

E
ig

e
n

 f
u

n
c
tio

n

Figure 3. Estimated eigenfunction from the Azillect study, based on a PVE of 95%. The red
curve corresponds the primary direction covering 91% of the total variability, and the blue one
for the secondary direction of variability.
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Figure 4. Change from the baseline in MDS-UPDRS part I + II + III total score for Inosine
and Placebo group in the SURE-PD3 study. The shaded region reflects the 95% pointwise
confidence interval.

with the 95% pointwise confidence band. There does not seem to be a
significant difference in the change of total scores from baseline between
the two groups.

Figure 6 presents the two leading eigenfunctions obtained from
conducting fPCA on the smoothed estimated covariance. The eigenvalues
corresponding to the two eigenfunctions are 48.5 (red line) and 4.7 (blue
line) respectively, meaning that the first eigenfunctions explains 91% of
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Figure 5. Effect of the Inosine on MDS-UPDRS Part I + II + III score over the course of the
study with 95% pointwise confidence interval (shaded in blue).

the total variability in the data. As we have in the case of Azillect study,
the pattern of the eigenfunctions conveys similar insights into the nature
of variations in the total score; the primary direction (in red) depicts a
gradual variation throughout the course of the 24 months of the study,
whereas, the change in sign of the secondary direction (in blue) reflects the
variations before and after the midway (around month 13 approximately)
of the study.

After extracting the eigencomponents by FPCA, using subject-specific
fPC-scores between the two groups we conduct the Hotelling-T2 test.
The p-value of the Hotelling T2 test is 0.42 suggesting that Inosine is
not able to improve the total MDS-UPDRS scores significantly compared
to the placebo, over the course of 24 months. This conclusion is also
corroborated by the factor 95% pointwise confidence interval of the mean
difference obtained from the gam() contains zero (Figure 5), and the
length of the band increases at the later months, because of considerable
amount of early-withdrawals.

If we want to design a new study whether the effect of the study drug
is the of the form of the red line in Figure 5, i.e. initially it goes above
zero and then gradually going away from zero after around 12 months,
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Figure 6. Estimated eigenfunction from the SURE-PD3 study, based on a PVE of 95%. The
red curve corresponds the primary direction covering 91% of the total variability, and the blue
one for the secondary direction of variability.

then assuming the covariance structure of the data as characterized by the
two principal eigenfunctions (Figure 6 with the specified eigenvalues, we
need about approximately 145 subjects in each group in order to achieve
a power of 80%, whereas about 190 subjects in each groups is required to
achieve a power of 90%.
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7 Alternate distribution of the Hotelling T 2 statistic

We want to find the alternate distribution of the Hotelling T 2 random variable

Tn =
n1n2

n1 + n2
(ζ̃1+ − ζ̃2+)>Λ̃

−1
(ζ̃1+ − ζ̃2+),
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as defined in (6), when the true mean difference η(t) = µ1(t)− µ2(t) is different from zero. From

the formula of the mean and the covariance of the shrinkage scores (equation 2.11 of 13), it is clear

that the population covariance of the shrinkage scores are different when the true mean function of

the two groups are different. On the other hand, under the null, the covariance matrices of the scores

of the two groups are the same. Therefore, under the alternative we have to find the distribution

of the Hotelling T 2 statistic under the assumption that the covariances of the scores between the

two groups are different. Therefore, the alternate distribution of the test-statistic no more follows a

non-central F distribution. Here, we will establish the alternate distribution of Tn assuming that the

covariances of the scores between the two groups, Λ1 and Λ2 are different. Under the assumption

of normality of the shrinkage scores,

ζ̃1+ − ζ̃2+ ∼ NK(∆,Λ1/n1 + Λ2/n2),

and

(ng − 1)Λ̃g ∼WK(ng − 1,Λg) g = 1, 2

To scale things properly as a function of the sample size, we want to represent the distribution of

Tn in terms of the allocation ratio of the sample size between the two groups. Let κ = n1/n2 be

the allocation ratio, then define, Λ† = Λ1 + κΛ2, so that ζ̃1+ − ζ̃2+ ∼ NK(∆, n−1
1 Λ†). We can

represent (1/n1 + 1/n2)Tn equivalently as

(1/n1 + 1/n2)Tn = n1(ζ̃1+ − ζ̃2+)>Λ†
−1/2

(n1Λ
†−1/2

Λ̃Λ†
−1/2

)−1Λ†
−1/2

(ζ̃1+ − ζ̃2+). (13)

Define Z =
√
n1Λ

†−1/2
(ζ̃1+ − ζ̃2+) and S := n1Λ

†−1/2
Λ̃Λ†

−1/2
, so that

(1/n1 + 1/n2)Tn = Z>S−1Z . Now, we derive the asymptotic distribution of S. Note

that,

(n1 + n2 − 2)S = n1Λ
†−1/2{(n1 − 1)Λ̃1}Λ†

−1/2

+ n1Λ
†−1/2{(n2 − 1)Λ̃2}Λ†

−1/2

By the property of Wishart distribution,

n1Λ
†−1/2{(n1 − 1)Λ̃1}Λ†

−1/2 ∼WK(n1 − 1, n1Ω)

n1Λ
†−1/2{(n2 − 1)Λ̃2}Λ†

−1/2 ∼WK(n2 − 1, n2(IK −Ω)),

Prepared using sagej.cls



Koner and Luo 35

where Ω = Λ†
−1/2

Λ1Λ
†−1/2

, and using the fact that Λ2 = κ−1(Λ† −Λ1). By the result of sum

of two Wishart distributions proved by ? , S has an approximate Wishart distribution as follows,

(n1 + n2 − 2)S a. d
= WK(ν, ν−1Ω∗), (14)

where

Ω∗ = n1(n1 − 1)Ω + n2(n2 − 1)(IK −Ω).

= n2
2 {κ(κ− 1/n2)Ω + (1− 1/n2)(IK −Ω)}

= n2
2Ω
†

and ν is the approximate degree of freedom of the Wishart distribution specified by

ν = n2

{
tr(Ω†

2
) + tr2(Ω†)

} [
κ2(κ− n−1

2 ){tr(Ω2) + tr2(Ω)}

+ (1− n−1
2 ){tr(IK −Ω)2 + tr2(IK −Ω)}

]−1
.

Since Λ̃ is independently distributed to ζ̃1+ − ζ̃2+, combining Equation (14) into the

representation of the test-statistic in (13), and applying by Theorem 3.2.12 of ? ,

νn−2
2 Z>Ω†

−1Z
Z>{(n1 + n2 − 2)S}−1Z ∼ χ

2
ν−K+1

This implies

ν(n1 + n2 − 2)Z>Ω†
−1Z

n2
2(1/n1 + 1/n2)Tn

∼ χ2
ν−K+1 (15)

By the property of multivariate normal distribution,

Z =
√
n1Λ

†−1/2
(ζ̃1+ − ζ̃2+) ∼ NK(

√
n1Λ

†−1/2
∆, IK).

Suppose, that the full rank matrix Ω† admits a spectral decomposition Ω† =
∑K
k=1 dkuku

>
k , with

u>k uj = I(k = j) by Theorem 1 of ? ,

Z>Ω†
−1Z ∼

K∑
k=1

d−1
k χ2

1

(
n1(u>k Λ†

−1/2
∆)2

)
(16)
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Dividing the left hand side of (16) with that of (15) we can see that our test statistic is approximately

distributed as

Tn
d
=


∑K
k=1 d

−1
k χ2

1

(
n1(u>k Λ†

−1/2
∆)2

)
χ2
ν−K+1/ν


× (κ+ 1− 2/n2)(1/κ+ 1)−1

8 Appendix
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